***** Nengo ***** Nengo is a Python library for building and simulating large-scale brain models using the methods of the `Neural Engineering Framework `_. Nengo can create sophisticated neural simulations with sensible defaults in few lines of code:: import nengo import numpy as np import matplotlib.pyplot as plt with nengo.Network() as net: sin_input = nengo.Node(output=np.sin) # A population of 100 neurons representing a sine wave sin_ens = nengo.Ensemble(n_neurons=100, dimensions=1) nengo.Connection(sin_input, sin_ens) # A population of 100 neurons representing the square of the sine wave sin_squared = nengo.Ensemble(n_neurons=100, dimensions=1) nengo.Connection(sin_ens, sin_squared, function=np.square) # View the decoded output of sin_squared squared_probe = nengo.Probe(sin_squared, synapse=0.01) sim = nengo.Simulator(net) sim.run(5.0) plt.plot(sim.trange(), sim.data[squared_probe]) plt.show() Yet, Nengo is highly extensible and flexible. You can define your own neuron types and learning rules, get input directly from hardware, drive robots, and even simulate your model on a completely different neural simulator. .. toctree:: :maxdepth: 2 getting_started examples user_guide dev_guide Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`